image/svg+xml
Logo Tom's Hardware
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Tom's Hardware Logo
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Forum
  • Sconti & Coupon
Sconti & Coupon

Novità!

Prova la nuova modalità di navigazione con le storie!

Accedi a Xenforo
Immagine di Allenarsi rallenta il cuore (e ti fa guadagnare anni) Allenarsi rallenta il cuore (e ti fa guadagnare anni)...
Immagine di Il ragno delle Canarie che ha dimezzato il suo genoma Il ragno delle Canarie che ha dimezzato il suo genoma...

Un orologio nucleare per misurare l’immutabile

La tecnologia del primo orologio nucleare sviluppato dalla TU Wien può essere applicata allo studio di questioni irrisolte nella fisica fondamentale.

Advertisement

Quando acquisti tramite i link sul nostro sito, potremmo guadagnare una commissione di affiliazione. Scopri di più
Avatar di Antonello Buzzi

a cura di Antonello Buzzi

Senior Editor

Pubblicato il 28/10/2025 alle 08:45

La notizia in un minuto

  • L'orologio nucleare al torio sviluppato dall'Università Tecnica di Vienna può misurare eventuali variazioni della costante di struttura fine con una precisione seimila volte superiore ai metodi precedenti
  • La tecnologia sfrutta le transizioni energetiche nei nuclei di torio che modificano la distribuzione dei protoni e il campo elettrico, permettendo di verificare se le costanti fisiche fondamentali sono davvero immutabili
  • La scoperta potrebbe rivoluzionare la comprensione della fisica, confermando o smentendo teorie che ipotizzano variazioni temporali delle leggi fondamentali dell'universo
Riassunto generato con l'IA. Potrebbe non essere accurato.

La ricerca sui confini della fisica fondamentale ha compiuto un passo straordinario grazie a una scoperta che potrebbe ribaltare ciò che sappiamo sulle leggi dell'universo. Un team di scienziati dell'Università Tecnica di Vienna ha dimostrato che la tecnologia dell'orologio nucleare al torio, presentata al mondo nel 2024, è in grado di misurare con precisione senza precedenti eventuali variazioni della costante di struttura fine, uno dei parametri fondamentali che regolano le forze della natura. La questione al centro della ricerca è tanto semplice quanto rivoluzionaria: le costanti fisiche che consideriamo universali sono davvero immutabili nel tempo e nello spazio?

Il professor Thorsten Schumm dell'Istituto di Fisica Atomica e Subatomica dell'ateneo viennese spiega il contesto: "Per quanto ne sappiamo, esistono solo quattro forze fondamentali in natura: la gravità, l'elettromagnetismo e le forze nucleari forte e debole. A ciascuna di queste forze corrisponde una costante fondamentale che ne descrive l'intensità rispetto alle altre". La costante di struttura fine, che ha un valore di circa 1/137, determina appunto l'intensità dell'interazione elettromagnetica. Se questo valore fosse diverso, le particelle cariche si comporterebbero in modo differente, i legami chimici funzionerebbero secondo altre regole e l'interazione tra luce e materia assumerebbe caratteristiche completamente diverse.

La possibilità di verificare sperimentalmente la stabilità di questa costante si basa su una proprietà straordinaria dei nuclei atomici di torio. Questi possono esistere in due stati energetici distinti: uno stato fondamentale a bassa energia e uno stato eccitato con energia leggermente superiore. La differenza tra questi due livelli energetici può essere misurata con estrema accuratezza, ed è proprio questa caratteristica che costituisce il fondamento dell'orologio nucleare. Ma c'è dell'altro: quando il nucleo passa da uno stato all'altro, modifica leggermente la sua forma ellittica, alterando di conseguenza la distribuzione dei protoni al suo interno e quindi il campo elettrico che genera.

La precisione raggiunta supera di seimila volte i metodi precedenti

Questo cambiamento nella configurazione del campo elettrico è il cuore della nuova tecnica di misurazione. Come precisa Schumm, "in particolare, cambia la componente quadrupolare del campo, un parametro che descrive se la forma del campo elettrico è più allungata, come un sigaro, oppure più schiacciata, come una lenticchia". L'entità di questa variazione dipende direttamente dalla costante di struttura fine, rendendo quindi possibile verificare se questo valore rimane effettivamente stabile o se presenta lievi oscillazioni.

La ricerca sul torio ha alle spalle una storia lunga decenni. Gli scienziati sospettavano da tempo che i nuclei atomici di questo elemento potessero essere utilizzati per misurazioni di precisione estremamente specifiche, e la ricerca di stati nucleari adatti procedeva in tutto il mondo. Il gruppo dell'Università Tecnica di Vienna, collaborando con partner internazionali, ha ottenuto la svolta decisiva nel 2024, individuando finalmente la transizione nucleare del torio di cui si discuteva da così tanto tempo. Poco dopo è stato dimostrato che il torio può effettivamente essere impiegato per costruire orologi nucleari ad alta precisione.

L'esperimento che ha portato ai risultati pubblicati sulla rivista Nature Communications ha richiesto una collaborazione transcontinentale. I cristalli contenenti torio sono stati prodotti nei laboratori dell'ateneo viennese, mentre le misurazioni di spettroscopia laser sono state successivamente condotte a Boulder, in Colorado. I risultati hanno superato ogni aspettativa: il metodo sviluppato può rilevare variazioni della costante di struttura fine con una precisione superiore di tre ordini di grandezza rispetto ai metodi precedenti, ovvero con un fattore di miglioramento pari a seimila.

Le implicazioni teoriche di questa capacità di misurazione sono profonde. Normalmente si assume che costanti come quella di struttura fine siano universali, con lo stesso valore in ogni momento e ovunque nell'universo. Tuttavia, esistono teorie che prevedono che questa costante possa variare lentamente di piccole quantità o addirittura oscillare periodicamente. Se una di queste ipotesi si rivelasse corretta, il nostro modo di comprendere la fisica verrebbe completamente rivoluzionato. Ma per scoprirlo servono strumenti di misura capaci di rilevare cambiamenti infinitesimali, ed è esattamente ciò che l'orologio atomico al torio ora rende possibile per la prima volta.

Come sottolinea Schumm nelle conclusioni dello studio, questa scoperta dimostra che la transizione del torio identificata dal suo team non serve soltanto a costruire una nuova generazione di orologi di precisione, ma apre la strada a indagini su aspetti della fisica che fino a oggi erano rimasti al di fuori della portata sperimentale. In sostanza, gli scienziati hanno ora tra le mani uno strumento che potrebbe confermare o smentire alcune delle teorie più audaci sulla natura fondamentale dell'universo, mettendo alla prova l'idea stessa di costante fisica e verificando se le leggi che governano il cosmo sono davvero immutabili o se invece evolvono nel tempo in modi che ancora dobbiamo comprendere.

Fonte dell'articolo: phys.org

Leggi altri articoli

👋 Partecipa alla discussione! Scopri le ultime novità che abbiamo riservato per te!

0 Commenti

⚠️ Stai commentando come Ospite . Vuoi accedere?

Invia

Per commentare come utente ospite, clicca triangoli

Cliccati: 0 /

Reset

Questa funzionalità è attualmente in beta, se trovi qualche errore segnalacelo.

Segui questa discussione
Advertisement

Non perdere gli ultimi aggiornamenti

Newsletter Telegram

I più letti di oggi


  • #1
    Il ragno delle Canarie che ha dimezzato il suo genoma
  • #2
    Windows 7 “mini” da 69 MB: geniale o inutile?
  • #3
    Nascita e morte del CD: la tecnologia che ha cambiato tutto
  • #4
    Allenarsi rallenta il cuore (e ti fa guadagnare anni)
  • #5
    Intel rilancia: AVX e AMX tornano con Nova Lake
  • #6
    Siri cambia anima: l’AI di Google arriva su iPhone
Articolo 1 di 5
Il ragno delle Canarie che ha dimezzato il suo genoma
Gli scienziati hanno scoperto che il ragno Dysdera tilosensis delle Canarie ha dimezzato il suo genoma in pochi milioni di anni.
Immagine di Il ragno delle Canarie che ha dimezzato il suo genoma
3
Leggi questo articolo
Articolo 2 di 5
Allenarsi rallenta il cuore (e ti fa guadagnare anni)
Gli scienziati del HEART Laboratory dimostrano che chi fa attività fisica consuma meno battiti al giorno e vive mediamente più a lungo dei sedentari.
Immagine di Allenarsi rallenta il cuore (e ti fa guadagnare anni)
2
Leggi questo articolo
Articolo 3 di 5
Il ritmo circadiano protegge dall'Alzheimer
Modificare il ritmo circadiano aumenta i livelli di NAD+ e riduce l'accumulo di tau nei topi, aprendo nuove prospettive nella prevenzione dell'Alzheimer.
Immagine di Il ritmo circadiano protegge dall'Alzheimer
Leggi questo articolo
Articolo 4 di 5
Scoperto il trucco mentale per recuperare i ricordi
Incarnare una versione infantile digitale del proprio volto aiuta a recuperare ricordi vividi dell'infanzia, collegando percezione corporea e memoria.
Immagine di Scoperto il trucco mentale per recuperare i ricordi
Leggi questo articolo
Articolo 5 di 5
Come gli oceani possono innescare un’era glaciale
Un nuovo modello climatico rivela che gli oceani, e non solo le rocce, potrebbero aver scatenato le glaciazioni più estreme della storia terrestre.
Immagine di Come gli oceani possono innescare un’era glaciale
Leggi questo articolo
Advertisement
Advertisement

Advertisement

Footer
Tom's Hardware Logo

 
Contatti
  • Contattaci
  • Feed RSS
Legale
  • Chi siamo
  • Privacy
  • Cookie
  • Affiliazione Commerciale
Altri link
  • Forum
Il Network 3Labs Network Logo
  • Tom's Hardware
  • SpazioGames
  • CulturaPop
  • Data4Biz
  • TechRadar
  • SosHomeGarden
  • Aibay

Tom's Hardware - Testata giornalistica associata all'USPI Unione Stampa Periodica Italiana, registrata presso il Tribunale di Milano, nr. 285 del 9/9/2013 - Direttore: Andrea Ferrario

3LABS S.R.L. • Via Pietro Paleocapa 1 - Milano (MI) 20121
CF/P.IVA: 04146420965 - REA: MI - 1729249 - Capitale Sociale: 10.000 euro

© 2025 3Labs Srl. Tutti i diritti riservati.