image/svg+xml
Logo Tom's Hardware
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Tom's Hardware Logo
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Forum
  • Sconti & Coupon
Offerte & Coupon
Accedi a Xenforo
Immagine di Testata la creatività dell’AI contro 100.000 esseri umani Testata la creatività dell’AI contro 100.000 esseri umani...
Immagine di Una stella simile al Sole ha smesso di brillare Una stella simile al Sole ha smesso di brillare...

Errori quantistici? Questa scoperta cambia tutto

Sviluppati nuovi codici quantistici di correzione errori che gestiscono centinaia di migliaia di qubit, aprendo la strada al calcolo quantistico.

Advertisement

Avatar di Antonello Buzzi

a cura di Antonello Buzzi

Senior Editor @Tom's Hardware Italia

Pubblicato il 30/09/2025 alle 08:35

La notizia in un minuto

  • Ricercatori dell'Institute of Science Tokyo hanno sviluppato codici di correzione degli errori quantistici LDPC che raggiungono prestazioni vicine al limite teorico dell'hashing bound, con un tasso di codifica superiore a 1/2 e complessità computazionale proporzionale al numero di qubit fisici
  • I nuovi codici operano su campi finiti non binari e correggono simultaneamente errori bit-flip e phase-flip, raggiungendo un tasso di errore frame di solo 10⁻⁴ su sistemi con centinaia di migliaia di qubit
  • Questa scoperta apre la strada a computer quantistici fault-tolerant con milioni di qubit logici, rendendo finalmente praticabili applicazioni in chimica quantistica, crittografia avanzata e ottimizzazione di sistemi complessi

Riassunto generato con l’IA. Potrebbe non essere accurato.

Quando acquisti tramite i link sul nostro sito, potremmo guadagnare una commissione di affiliazione. Scopri di più

Il computing quantistico si trova di fronte a una sfida apparentemente insormontabile: mentre le applicazioni più promettenti richiedono milioni di qubit logici per funzionare, i sistemi attuali faticano a gestire anche poche decine di qubit senza incorrere in errori devastanti. La ricerca di un metodo efficace per correggere gli errori quantistici su larga scala rappresenta uno dei problemi più complessi dell'informatica moderna. Tuttavia, una scoperta rivoluzionaria proveniente dal Giappone potrebbe aver finalmente trovato la chiave per sbloccare il potenziale dei computer quantistici su scala industriale.

La svolta dall'Istituto di Scienze di Tokyo

Il professor associato Kenta Kasai e lo studente magistrale Daiki Komoto dell'Institute of Science Tokyo hanno sviluppato una nuova classe di codici di correzione degli errori quantistici basati sulla tecnologia LDPC (Low-Density Parity-Check) che supera drasticamente le limitazioni dei sistemi precedenti. Questi codici innovativi raggiungono prestazioni che si avvicinano al limite teorico dell'hashing bound, mantenendo al contempo un'efficienza computazionale straordinaria.

"Il nostro codice di correzione degli errori quantistici ha un tasso di codifica superiore a 1/2, progettato per centinaia di migliaia di qubit logici", spiega Kasai. "Inoltre, la sua complessità di decodifica è proporzionale al numero di qubit fisici, il che rappresenta un risultato significativo per la scalabilità quantistica."

Il limite invisibile dei sistemi attuali

I metodi di correzione degli errori quantistici esistenti soffrono di una limitazione fondamentale: sono estremamente dispendiosi in termini di risorse, utilizzando codici con tassi essenzialmente nulli. Questo significa che da un numero enorme di qubit fisici è possibile estrarre solo una frazione minuscola di qubit logici affidabili.

Centinaia di migliaia di qubit gestiti con efficienza computazionale proporzionale

Le sfide ingegneristiche sono altrettanto scoraggianti. I tempi di coerenza limitati dei qubit, gli alti tassi di errore nelle operazioni logiche, le difficoltà nell'integrazione su larga scala e i problemi di raffreddamento rappresentano ostacoli formidabili. Anche in uno scenario idealizzato dove questi problemi tecnici fossero risolti, la progettazione dei codici di correzione quantistica ha dovuto affrontare sfide teoriche irrisolte per decenni.

L'innovazione oltre i campi binari

Il breakthrough dei ricercatori giapponesi si basa su una tecnica costruttiva rivoluzionaria che utilizza permutazioni affini per migliorare la diversità strutturale dei codici ed evitare cicli brevi, noti per compromettere le prestazioni di decodifica. A differenza dei codici LDPC convenzionali definiti su campi finiti binari, questi nuovi codici operano su campi finiti non binari, permettendo di trasportare maggiori quantità di informazione e migliorare significativamente le prestazioni di decodifica.

I ricercatori hanno inoltre sviluppato un metodo di decodifica efficiente basato sull'algoritmo sum-product, capace di gestire simultaneamente sia gli errori bit-flip (X) che phase-flip (Z), i due tipi fondamentali di errori nel computing quantistico. Questa rappresenta un'innovazione sostanziale rispetto ai metodi precedenti che potevano correggere solo un tipo di errore alla volta.

Risultati che sfidano i limiti teorici

Le simulazioni numeriche su larga scala hanno dimostrato prestazioni eccezionali: i nuovi codici di correzione degli errori hanno raggiunto un tasso di errore frame di appena 10⁻⁴, anche su sistemi con centinaia di migliaia di qubit. Questo risultato si avvicina notevolmente all'hashing bound, il limite teorico massimo per la trasmissione di informazioni su un canale quantistico, rappresentando un traguardo che la comunità scientifica inseguiva da anni.

La ricerca, pubblicata su npj Quantum Information, apre prospettive concrete per l'implementazione di computer quantistici tolleranti agli errori su scala industriale. "I nostri codici LDPC quantistici possono potenzialmente permettere ai computer quantistici di scalare fino a milioni di qubit logici", osserva Kasai. "Questo migliorerà significativamente l'affidabilità e la scalabilità dei computer quantistici per applicazioni pratiche, aprendo la strada a future ricerche."

Verso applicazioni pratiche rivoluzionarie

Le implicazioni di questa scoperta si estendono ben oltre il laboratorio. Campi come la chimica quantistica, la crittografia avanzata e l'ottimizzazione di sistemi complessi potrebbero finalmente beneficiare della potenza computazionale quantistica su scala reale. La capacità di gestire centinaia di migliaia o persino milioni di qubit logici con codici di correzione degli errori efficienti rappresenta il ponte mancante tra la teoria quantistica e le sue applicazioni pratiche più ambiziose.

Questo sviluppo segna un punto di svolta fondamentale nell'evoluzione del computing quantistico, trasformando quello che fino a ieri sembrava un sogno tecnologico in una realtà ingegneristica concreta. La strada verso computer quantistici fault-tolerant per applicazioni pratiche non è mai stata così vicina alla realizzazione.

Fonte dell'articolo: phys.org

Le notizie più lette

#1
Gmail in tilt! Caselle invase da email di spam
7

Hardware

Gmail in tilt! Caselle invase da email di spam

#2
Project AGE 1000, il nuovo gioco di Dragon Ball è totalmente inaspettato
1

Videogioco

Project AGE 1000, il nuovo gioco di Dragon Ball è totalmente inaspettato

#3
Outlook non si apre? Microsoft sta risolvendo il problema
2

Hardware

Outlook non si apre? Microsoft sta risolvendo il problema

#4
Arriva il PC Linux tascabile: è il portatile definitivo?
2

Hardware

Arriva il PC Linux tascabile: è il portatile definitivo?

#5
ChatGPT ora pesca informazioni da uno dei posti peggiori della rete
3

Hardware

ChatGPT ora pesca informazioni da uno dei posti peggiori della rete

👋 Partecipa alla discussione!

0 Commenti

⚠️ Stai commentando come Ospite . Vuoi accedere?

Invia

Per commentare come utente ospite, clicca quadrati

Cliccati: 0 /

Reset

Questa funzionalità è attualmente in beta, se trovi qualche errore segnalacelo.

Segui questa discussione

Advertisement

Ti potrebbe interessare anche

Una stella simile al Sole ha smesso di brillare

Scienze

Una stella simile al Sole ha smesso di brillare

Di Antonello Buzzi
Testata la creatività dell’AI contro 100.000 esseri umani

Scienze

Testata la creatività dell’AI contro 100.000 esseri umani

Di Antonello Buzzi
Gli scienziati lanciano l’allarme sulle amebe patogene

Scienze

Gli scienziati lanciano l’allarme sulle amebe patogene

Di Antonello Buzzi
Alzheimer, scoperta una molecola naturale con effetti cognitivi

Scienze

Alzheimer, scoperta una molecola naturale con effetti cognitivi

Di Antonello Buzzi
NASA accelera sul ritorno umano in orbita lunare

Scienze

NASA accelera sul ritorno umano in orbita lunare

Di Antonello Buzzi

Advertisement

Advertisement

Footer
Tom's Hardware Logo

 
Contatti
  • Contattaci
  • Feed RSS
Legale
  • Chi siamo
  • Privacy
  • Cookie
  • Affiliazione Commerciale
Altri link
  • Forum
Il Network 3Labs Network Logo
  • Tom's Hardware
  • SpazioGames
  • CulturaPop
  • Data4Biz
  • TechRadar
  • SosHomeGarden
  • Aibay

Tom's Hardware - Testata giornalistica associata all'USPI Unione Stampa Periodica Italiana, registrata presso il Tribunale di Milano, nr. 285 del 9/9/2013 - Direttore: Andrea Ferrario

3LABS S.R.L. • Via Pietro Paleocapa 1 - Milano (MI) 20121
CF/P.IVA: 04146420965 - REA: MI - 1729249 - Capitale Sociale: 10.000 euro

© 2026 3Labs Srl. Tutti i diritti riservati.