image/svg+xml
Logo Tom's Hardware
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Tom's Hardware Logo
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Forum
  • Sconti & Coupon
% Black Friday
%
Accedi a Xenforo
Immagine di Come comprare da PcComponentes dall’Italia senza sorprese Come comprare da PcComponentes dall’Italia senza sorprese...
Immagine di La GPU bandita di NVIDIA è più veloce del previsto La GPU bandita di NVIDIA è più veloce del previsto...

Nanometri e densità dei transistor, facciamo chiarezza: ha ancora senso paragonarli?

In passato, nanometri e densità dei transistor andavano a braccetto nel mondo dei semiconduttori, ma non è più così. Cosa indicano i nanometri oggi?

Advertisement

Avatar di Marco Pedrani

a cura di Marco Pedrani

Caporedattore centrale @Tom's Hardware Italia

Pubblicato il 17/05/2024 alle 14:00 - Aggiornato il 20/05/2024 alle 10:53
Quando acquisti tramite i link sul nostro sito, potremmo guadagnare una commissione di affiliazione. Scopri di più

Non si può parlare di semiconduttori senza parlare di nanometri: questa unità di misura è legata a doppio filo ai chip e alla loro creazione, dato che è usata per identificare i processi produttivi. Con il passare del tempo, però, si è legata molto più al marketing che alla tecnologia vera e propria: cosa significa? Cerchiamo di capirlo.

All’inizio della storia dei semiconduttori, i nanometri indicavano la dimensione minima dei gate dei transistor all’interno del chip. Questo vuol dire che, per esempio, un processore a 500nm (prodotto all’inizio degli anni ‘90) aveva transistor con gate che hanno dimensione 500nm. Vista questa correlazione, indicare il processo produttivo con la dimensione del gate del transistor era una buona idea, dal momento che un numero più basso corrispondeva a una tecnologia migliore e a chip più densi, con un maggior numero di transistor.

I nanometri oggi indicano tutt’altro

Tuttavia, il rapido progresso tecnologico ha messo fine al senso di questo rapporto tra nanometri e dimensioni del gate dei transistor. La “corsa al nanometro” è diventata, come detto, principalmente una questione di marketing: per farvi un esempio, i 3nm di TSMC non hanno transistor con gate di 3nm, e lo stesso vale per le altre fonderie.

La correlazione tra nanometri e dimensione dei transistor ha iniziato a perdere di significato molto prima dei processi produttivi moderni: Intel iniziò a ridurre in maniera più aggressiva le dimensioni dei gate già con il processo 250nm, sviluppato nel 1997, che aveva transistor con gate di 200nm.

Oggi i nanometri indicano un processo produttivo migliore del precedente, con una maggiore densità di transistor, più prestazioni e più efficienza energetica.

La fine del rapporto nanometri-gate dei transistor può essere identificata con lo sviluppo del processo produttivo Intel 45nm, del 2007. Qui l’azienda arrivò a transistor planari con gate da 25nm e, di fatto, negli anni successivi non fu possibile ridurre ulteriormente questa distanza senza peggiorare i risultati.

Lo sviluppo dei transistor FinFET ha assicurato il progresso tecnologico, permettendo a Intel di aumentare la densità di transistor nel processo 22nm senza modificare la lunghezza del gate, rimasta a 25nm.

Facendo un salto in avanti e guardando i processori moderni, è chiaro come non ci sia più relazione tra nanometri e gate dei transistor: il processo produttivo Intel 7 ha gate con un pitch di 54 / 60 nm, mentre Intel 4, l’ultimo nodo produttivo ad usare i transistor FinFET, ha gate da 50nm.

Il dato importante oggi è la densità

Nei semiconduttori moderni, conta soprattutto la densità dei transistor, oltre ovviamente alla loro tecnologia. La densità raggiungibile con un determinato processo produttivo determina molte delle caratteristiche del chip, definendo in buona sostanza la sua qualità rispetto agli altri, indipendentemente dai nanometri del processo produttivo.

Intel
Immagine id 17138

Facciamo un esempio pratico: il vecchio nodo Intel 10nm SuperFin, usato per i processori Intel Tiger Lake, poteva raggiungere una densità di 100,76 MTr/mm2 (mega-transistor per mm quadro, unità di misura della densità di un processo produttivo). I nodi a 7nm di Samsung e TSMC, in teoria migliori stando alla nomenclatura, erano in realtà peggiori in termini di densità: Samsung raggiungeva i 95,08 MTr/mm2, mentre TSMC si fermava a 91,2 MTr/mm2.

Questo è anche il motivo per cui, nel 2021, Intel ha deciso di rinominare i propri processi produttivi, trasformando il nodo 10nm Enhanced SuperFin in Intel 7 e adottando i nomi che conosciamo oggi. La motivazione dietro questa scelta è semplice: allineare il nome dei propri processi produttivi a quello dei concorrenti, vista la densità più alta.

Le nuove tecnologie sono la chiave per chip sempre più potenti

Lo sviluppo tecnologico non si è fermato una volta che ci si è resi conto del limite di lunghezza dei gate dei transistor: questo perché le aziende hanno lavorato per trovare nuove tecnologie capaci di aggirare questo limite, aumentando potenza ed efficienza dei chip in altri modi.

Ne è un ottimo esempio la tecnologia FinFET citata prima, già sostituita da alcune aziende da quella GAA (Gate All-Around). Ma ci sono anche altre novità all’orizzonte, come ad esempio la nuova tecnologia di alimentazione Intel PowerVIA, che apre a nuove possibilità grazie all’alimentazione posteriore del chip (definita “backside power delivery”), anziché anteriore.

Intel
wafer

Il CEO Pat Gelsinger crede fortemente nel progetto Intel Foundry, tanto che l’azienda può vantare di essere la prima al mondo ad usare macchinari High NA EUV di ASML per la produzione di chip. Questi macchinari per la litografica permetteranno di stampare componenti fino a 1,7 volte più piccoli rispetto a quanto possibile con gli strumenti EUV esistenti, abilitando il ridimensionamento delle funzionalità 2D, con conseguente densità fino a 2,9 volte maggiore.

I macchinari High NA EUV saranno usati per i nodi successivi a Intel 18A e saranno fondamentali per creare chip sempre più potenti, alimentando il progresso tecnologico dei semiconduttori e mantenendo viva la Legge di Moore. L’obiettivo è di raggiungere un trilione di transistor in un package entro il 2030.

👋 Partecipa alla discussione! Scopri le ultime novità che abbiamo riservato per te!

0 Commenti

⚠️ Stai commentando come Ospite . Vuoi accedere?

Invia

Per commentare come utente ospite, clicca triangoli

Cliccati: 0 /

Reset

Questa funzionalità è attualmente in beta, se trovi qualche errore segnalacelo.

Segui questa discussione

Advertisement

Ti potrebbe interessare anche

La GPU bandita di NVIDIA è più veloce del previsto
1

Hardware

La GPU bandita di NVIDIA è più veloce del previsto

Di Antonello Buzzi
Come comprare da PcComponentes dall’Italia senza sorprese

Sponsorizzato

Come comprare da PcComponentes dall’Italia senza sorprese

Di Antonello Buzzi
Crollo in borsa per NVIDIA e AMD: che succede?
4

Hardware

Crollo in borsa per NVIDIA e AMD: che succede?

Di Marco Pedrani
Questa case mini-ITX di Fractal è STUPENDO, quasi un'oggetto di design! (-26%)

Black Friday

Questa case mini-ITX di Fractal è STUPENDO, quasi un'oggetto di design! (-26%)

Di David Bossi
Questo dissipatore Corsair a liquido è il TOP e oggi sta al MINIMO storico!

Black Friday

Questo dissipatore Corsair a liquido è il TOP e oggi sta al MINIMO storico!

Di David Bossi

Advertisement

Advertisement

Footer
Tom's Hardware Logo

 
Contatti
  • Contattaci
  • Feed RSS
Legale
  • Chi siamo
  • Privacy
  • Cookie
  • Affiliazione Commerciale
Altri link
  • Forum
Il Network 3Labs Network Logo
  • Tom's Hardware
  • SpazioGames
  • CulturaPop
  • Data4Biz
  • TechRadar
  • SosHomeGarden
  • Aibay

Tom's Hardware - Testata giornalistica associata all'USPI Unione Stampa Periodica Italiana, registrata presso il Tribunale di Milano, nr. 285 del 9/9/2013 - Direttore: Andrea Ferrario

3LABS S.R.L. • Via Pietro Paleocapa 1 - Milano (MI) 20121
CF/P.IVA: 04146420965 - REA: MI - 1729249 - Capitale Sociale: 10.000 euro

© 2025 3Labs Srl. Tutti i diritti riservati.