image/svg+xml
Logo Tom's Hardware
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Tom's Hardware Logo
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Forum
  • Sconti & Coupon
Sconti & Coupon

Novità!

Prova la nuova modalità di navigazione con le storie!

Accedi a Xenforo
Immagine di Un raggio di luce può violare la terza legge di Newton Un raggio di luce può violare la terza legge di Newton...
Immagine di Fusa la prima rete quantistica a 18 nodi: svolta dalla Cina Fusa la prima rete quantistica a 18 nodi: svolta dalla Cina...

Princeton realizza il qubit più stabile di sempre

Un team di Princeton ha sviluppato un qubit superconduttore con tempo di coerenza oltre 1 millisecondo, quasi quindici volte lo standard attuale.

Advertisement

Quando acquisti tramite i link sul nostro sito, potremmo guadagnare una commissione di affiliazione. Scopri di più
Avatar di Antonello Buzzi

a cura di Antonello Buzzi

Senior Editor

Pubblicato il 06/11/2025 alle 08:15

La notizia in un minuto

  • Ricercatori di Princeton hanno sviluppato un qubit superconduttore con tempo di coerenza superiore a 1 millisecondo, quasi quindici volte più lungo dello standard attuale e tre volte il miglior risultato mai documentato
  • L'innovazione si basa sulla combinazione di tantalio e silicio ad alta purezza, che riduce drasticamente i difetti superficiali responsabili degli errori nei calcoli quantistici
  • In un sistema da 1.000 qubit, questa tecnologia potrebbe portare a un miglioramento delle prestazioni di un miliardo di volte, compatibile con le architetture transmon già utilizzate da Google e IBM
Riassunto generato con l'IA. Potrebbe non essere accurato.

Un gruppo di ricercatori dell'Università di Princeton ha raggiunto un risultato che potrebbe accelerare significativamente l'avvento di computer quantistici realmente utilizzabili. Il team ha sviluppato un qubit superconduttore con un tempo di coerenza superiore a 1 millisecondo, quasi quindici volte più lungo dello standard industriale attuale e tre volte superiore al miglior risultato mai documentato in laboratorio. La ricerca, pubblicata sulla prestigiosa rivista Nature, rappresenta il più significativo progresso singolo in questo parametro critico registrato negli ultimi dieci anni, aprendo prospettive concrete per sistemi scalabili e correzione efficiente degli errori.

Il tempo di coerenza dei qubit costituisce infatti il tallone d'Achille delle attuali tecnologie quantistiche. Come spiega Andrew Houck, decano dell'ingegneria a Princeton e co-investigatore principale dello studio, "la vera sfida, ciò che oggi ci impedisce di avere computer quantistici utili, è che costruisci un qubit e l'informazione semplicemente non dura a lungo". Durante questo brevissimo intervallo temporale, il qubit deve completare tutte le operazioni di calcolo prima che errori inevitabili compromettano i risultati. Estendere questa finestra temporale significa moltiplicare esponenzialmente la capacità di calcolo dell'intero sistema.

La chiave dell'innovazione risiede in una combinazione di materiali apparentemente semplice ma tecnicamente complessa da realizzare: tantalio e silicio. Il team guidato da Houck e dalla co-investigatrice Nathalie de Leon, direttrice associata della Princeton Quantum Initiative, ha sostituito l'alluminio tradizionalmente utilizzato nei circuiti superconduttori con il tantalio, un metallo che presenta intrinsecamente meno difetti superficiali. Questi difetti microscopici agiscono come trappole energetiche, assorbendo l'energia del qubit durante i calcoli e introducendo errori che si moltiplicano quando più qubit vengono integrati in un chip.

Parallelamente, i ricercatori hanno abbandonato il substrato di zaffiro convenzionale in favore del silicio ad alta purezza, materiale standard dell'industria elettronica. L'intuizione iniziale proviene da Robert Cava, professore di chimica a Princeton ed esperto di materiali superconduttori, che nel 2021 suggerì al team le potenzialità del tantalio nonostante non avesse esperienza diretta nel calcolo quantistico. "Il tantalio è eccezionalmente robusto e può sopravvivere alle pulizie aggressive necessarie per rimuovere le contaminazioni dal processo di fabbricazione", spiega Faranak Bahrami, ricercatrice postdottorale e co-autrice principale dell'articolo insieme al dottorando Matthew P. Bland.

Sostituire i componenti attuali del processore quantistico Willow di Google con i qubit di Princeton consentirebbe un miglioramento delle prestazioni di un fattore 1.000

La crescita diretta di tantalio su silicio ha richiesto il superamento di numerose sfide tecniche legate alle proprietà intrinseche dei due materiali. Tuttavia, una volta perfezionato il processo, le misurazioni hanno rivelato che la maggior parte delle perdite energetiche residue proveniva effettivamente dal substrato di zaffiro. La sostituzione con silicio ultrapuro ha eliminato questa fonte di errore, permettendo al qubit di mantenere la propria coerenza per periodi senza precedenti.

L'impatto di questo progresso diventa ancora più rilevante considerando che il design sviluppato a Princeton utilizza circuiti di tipo transmon, già impiegati da leader industriali come Google e IBM. Questi qubit superconduttori operano a temperature estremamente basse e offrono una tolleranza relativamente elevata alle interferenze esterne, oltre a essere compatibili con le attuali tecnologie di produzione elettronica. La compatibilità del nuovo design con le architetture esistenti significa che potrebbe essere integrato nei processori attuali senza necessità di riprogettazioni radicali.

I benefici del qubit di Princeton crescono esponenzialmente con l'aumentare delle dimensioni del sistema. In un ipotetico computer quantistico da 1.000 qubit, sostituire i componenti attuali con quelli sviluppati dal team porterebbe a un miglioramento delle prestazioni dell'ordine di un miliardo di volte. Questa scalabilità esponenziale rappresenta un elemento cruciale per affrontare le due maggiori sfide dell'industria quantistica: l'espansione del numero di qubit e la correzione degli errori.

Michel Devoret, scienziato capo per l'hardware presso Google Quantum AI e Premio Nobel per la Fisica 2025, ha definito la sfida di estendere la vita dei circuiti quantistici un "cimitero" di idee per molti fisici. "Nathalie ha avuto davvero il coraggio di perseguire questa strategia e farla funzionare", ha commentato, sottolineando anche l'importanza della collaborazione tra università e industria nel far avanzare le frontiere tecnologiche. Mentre i laboratori universitari possono concentrarsi sugli aspetti fondamentali che limitano le prestazioni, l'industria può scalare questi progressi in sistemi di larga scala.

La ricerca ha validato le prestazioni del nuovo qubit costruendo un chip quantistico completamente funzionante, dimostrando non solo il vantaggio teorico ma anche la fattibilità pratica della tecnologia. Un aspetto particolarmente promettente riguarda la produzione: il silicio è ampiamente disponibile con purezze estremamente elevate e rappresenta la base dell'intera industria dei semiconduttori. Come evidenzia de Leon, "abbiamo dimostrato che è possibile con il silicio", rendendo relativamente agevole per chiunque lavori su processori scalabili l'adozione di questa tecnologia.

Il lavoro rappresenta la sintesi di competenze complementari: il gruppo di Houck specializzato nella costruzione e ottimizzazione di circuiti superconduttori, il laboratorio di de Leon focalizzato sulla metrologia quantistica e sui materiali, e il team di Cava con tre decenni di esperienza all'avanguardia nei materiali superconduttori. Questa sinergia interdisciplinare ha prodotto risultati che nessun gruppo avrebbe potuto raggiungere isolatamente, un modello di collaborazione che potrebbe ispirare futuri progressi nel settore.

Fonte dell'articolo: phys.org

Leggi altri articoli

👋 Partecipa alla discussione! Scopri le ultime novità che abbiamo riservato per te!

0 Commenti

⚠️ Stai commentando come Ospite . Vuoi accedere?

Invia

Per commentare come utente ospite, clicca cerchi

Cliccati: 0 /

Reset

Questa funzionalità è attualmente in beta, se trovi qualche errore segnalacelo.

Segui questa discussione
Advertisement

Non perdere gli ultimi aggiornamenti

Newsletter Telegram

I più letti di oggi


  • #1
    Tornano le ricariche gratis per chi compra Tesla
  • #2
    Windows 7 “mini” da 69 MB: geniale o inutile?
  • #3
    Luminosità e contrasto: la "terza via" per un televisore ideale
  • #4
    Come giocare gratis: cloud gaming Amazon Luna
  • #5
    Ecco come saranno i prossimi interni Hyundai
  • #6
    C'è chi è convinto che i large language model possano pensare
Articolo 1 di 5
Fusa la prima rete quantistica a 18 nodi: svolta dalla Cina
L’esperimento si basa sull’entanglement swapping, una tecnica che consente di mantenere la correlazione quantistica anche tra nodi lontani.
Immagine di Fusa la prima rete quantistica a 18 nodi: svolta dalla Cina
Leggi questo articolo
Articolo 2 di 5
Un raggio di luce può violare la terza legge di Newton
Ricercatori giapponesi dimostrano come la luce possa indurre rotazioni magnetiche perpetue, apparentemente violando la terza legge di Newton nei materiali.
Immagine di Un raggio di luce può violare la terza legge di Newton
Leggi questo articolo
Articolo 3 di 5
Le origini della tecnologia sono più antiche del previsto
Nuove analisi mostrano come gli ominidi abbiano preservato la produzione di utensili nonostante drastici cambiamenti climatici.
Immagine di Le origini della tecnologia sono più antiche del previsto
Leggi questo articolo
Articolo 4 di 5
Scoperto meccanismo cerebrale per lenire il dolore
Il cervello controlla il dolore attraverso una mappa anatomica precisa che distingue volto, braccia e gambe, aprendo nuove possibilità.
Immagine di Scoperto meccanismo cerebrale per lenire il dolore
Leggi questo articolo
Articolo 5 di 5
Einstein aveva torto sulla costante cosmologica?
L'energia oscura potrebbe non essere costante ma evolversi nel tempo cosmico, mettendo in discussione la costante cosmologica di Einstein.
Immagine di Einstein aveva torto sulla costante cosmologica?
Leggi questo articolo
Advertisement
Advertisement

Advertisement

Footer
Tom's Hardware Logo

 
Contatti
  • Contattaci
  • Feed RSS
Legale
  • Chi siamo
  • Privacy
  • Cookie
  • Affiliazione Commerciale
Altri link
  • Forum
Il Network 3Labs Network Logo
  • Tom's Hardware
  • SpazioGames
  • CulturaPop
  • Data4Biz
  • TechRadar
  • SosHomeGarden
  • Aibay

Tom's Hardware - Testata giornalistica associata all'USPI Unione Stampa Periodica Italiana, registrata presso il Tribunale di Milano, nr. 285 del 9/9/2013 - Direttore: Andrea Ferrario

3LABS S.R.L. • Via Pietro Paleocapa 1 - Milano (MI) 20121
CF/P.IVA: 04146420965 - REA: MI - 1729249 - Capitale Sociale: 10.000 euro

© 2025 3Labs Srl. Tutti i diritti riservati.