image/svg+xml
Logo Tom's Hardware
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Tom's Hardware Logo
  • Hardware
  • Videogiochi
  • Mobile
  • Elettronica
  • EV
  • Scienze
  • B2B
  • Quiz
  • Forum
  • Sconti & Coupon
Sconti & Coupon

Novità!

Prova la nuova modalità di navigazione con le storie!

Accedi a Xenforo
Immagine di Tumore alla vescica: la svolta arriva da un micro-impianto Tumore alla vescica: la svolta arriva da un micro-impianto...
Immagine di Scoperti nuovi indizi sulle origini di Homo sapiens Scoperti nuovi indizi sulle origini di Homo sapiens...

La luce accelera gli elettroni in un solo ciclo

Ricercatori tedeschi osservano per la prima volta l'accelerazione ponderomotiva degli elettroni durante una singola oscillazione elettromagnetica.

Advertisement

Quando acquisti tramite i link sul nostro sito, potremmo guadagnare una commissione di affiliazione. Scopri di più
Avatar di Antonello Buzzi

a cura di Antonello Buzzi

Senior Editor

Pubblicato il 13/11/2025 alle 08:40

La notizia in un minuto

  • Ricercatori tedeschi hanno osservato per la prima volta l'accelerazione ponderomotiva degli elettroni durante una singola oscillazione del campo elettromagnetico, superando il limite tradizionale che richiedeva impulsi laser prolungati con numerosi cicli
  • La chiave dell'esperimento risiede nell'uso di nanopunte di tungsteno che generano gradienti di intensità estremamente elevati, permettendo di caratterizzare processi ultraveloci su scala sub-ciclica con risoluzione nell'ordine degli attosecondi
  • La scoperta apre un nuovo approccio per studiare gli effetti quantistici del processo di emissione elettronica, con potenziali applicazioni rivoluzionarie in optoelettronica e metrologia ultraveloce
Riassunto generato con l'IA. Potrebbe non essere accurato.

La fisica degli elettroni accelerati dalla luce ha appena compiuto un salto quantico nella scala temporale: per la prima volta, ricercatori tedeschi hanno osservato l'accelerazione ponderomotiva durante una singola oscillazione del campo elettromagnetico. Si tratta di un fenomeno noto da decenni ma finora documentato solo con impulsi laser prolungati contenenti numerosi cicli di oscillazione. La nuova scoperta, frutto della collaborazione tra l'Università Friedrich-Alexander di Erlangen-Norimberga (FAU) e l'Università di Rostock, apre prospettive inedite per la caratterizzazione di processi ultraveloci e potrebbe rivoluzionare applicazioni in optoelettronica e metrologia su scala attosecondi.

L'accelerazione ponderomotiva descrive il movimento di deriva che un elettrone acquisisce quando viene investito da un impulso laser intenso in presenza di un gradiente spaziale del campo luminoso. Tradizionalmente, questo effetto è concepito come un fenomeno che si accumula progressivamente attraverso molteplici oscillazioni della luce: il campo elettromagnetico variabile fa oscillare l'elettrone avanti e indietro, ma se l'intensità luminosa cambia lungo la sua traiettoria, l'elettrone acquisisce a ogni ciclo un moto aggiuntivo che persiste anche dopo il passaggio dell'impulso. È come se la distribuzione spaziale dell'intensità luminosa costituisse una sorta di pendio lungo il quale l'elettrone scivola progressivamente.

Il limite fondamentale di questo fenomeno risiedeva proprio nella sua natura cumulativa: anche focalizzando intensamente un fascio laser, la variazione spaziale dell'intensità luminosa risulta relativamente modesta, rendendo l'effetto apprezzabile solo con impulsi laser di lunga durata. Il gruppo di ricerca guidato dal professor Peter Hommelhoff, presso la Cattedra di Fisica Laser della FAU, ha aggirato elegantemente questo ostacolo sfruttando le proprietà uniche delle nanostrutture metalliche.

La chiave dell'esperimento sta nell'utilizzo di punte di tungsteno affilate fino a dimensioni nanometriche, prodotte nei laboratori FAU attraverso un processo specializzato. Quando illuminate con luce laser, queste nanopunte generano campi elettromagnetici nelle loro immediate vicinanze caratterizzati da gradienti di intensità estremamente elevati. Gli impulsi laser impiegati contenevano soltanto tre oscillazioni del campo elettrico, riducendo drasticamente la durata temporale dell'interazione rispetto agli esperimenti convenzionali.

Per la prima volta, gli elettroni liberati dalla luce sono stati assegnati con precisione a singoli cicli del campo elettromagnetico, rivelando un pattern a strisce completamente inatteso nel segnale degli elettroni lenti

Come spiega il dottor Jonas Heimerl, ricercatore presso la Cattedra di Fisica Laser, "tipicamente siamo particolarmente interessati agli elettroni veloci rilasciati dalle nanostrutture, che possiamo controllare con precisione mediante la forma d'onda dell'impulso luminoso". Per questi elettroni energetici era noto che il moto ponderomotivo risulta completamente soppresso in presenza di punte particolarmente affilate. La sorpresa è arrivata analizzando gli elettroni più lenti: proprio nel loro segnale è emerso un pattern a strisce pronunciato e precedentemente sconosciuto, che indica non solo la presenza ma addirittura un potenziamento degli effetti ponderomotivi.

La comprensione teorica di questi risultati sperimentali inattesi è stata resa possibile dalle simulazioni numeriche condotte dal gruppo del professor Thomas Fennel all'Università di Rostock. I calcoli hanno descritto quantitativamente l'accelerazione ponderomotiva operante nell'arco di una singola oscillazione luminosa, evidenziando implicazioni di vasta portata per la caratterizzazione e il controllo della dinamica elettronica ultraveloce. Anne Herzig, dottoranda nel gruppo di Fennel, sottolinea come "l'accelerazione ponderomotiva sia solitamente descritta come un effetto mediato su numerose oscillazioni luminose. Un aspetto affascinante delle nostre scoperte è che questo fenomeno può ora essere utilizzato per misurare processi sulla scala temporale di una frazione di oscillazione luminosa".

Dal punto di vista fisico fondamentale, le strutture a strisce indotte dal campo prossimale possono in linea di principio essere spiegate con la meccanica classica. Tuttavia, come aggiunge Herzig, esse aprono un nuovo approccio per caratterizzare gli effetti quantistici del processo di emissione. Questa dualità tra descrizione classica e manifestazioni quantistiche rappresenta uno degli aspetti più intriganti della scoperta, suggerendo che il fenomeno si collochi in quella zona di confine dove meccanica classica e quantistica si intrecciano in modi ancora da esplorare completamente.

La ricerca, pubblicata sulla rivista Nature Physics nel 2025, rappresenta un risultato emblematico dell'interazione virtuosa tra esperimento e teoria. Le intuizioni acquisite hanno il potenziale per espandere la comprensione fondamentale della fotoemissione e abilitare nuove applicazioni nella metrologia ultraveloce e nell'optoelettronica. In particolare, la capacità di caratterizzare processi su scala sub-ciclica rispetto all'oscillazione luminosa potrebbe consentire lo sviluppo di tecniche diagnostiche con risoluzione temporale nell'ordine degli attosecondi, aprendo finestre di osservazione su dinamiche elettroniche finora inaccessibili.

Gli sviluppi futuri di questa linea di ricerca potrebbero concentrarsi sull'ottimizzazione delle geometrie delle nanostrutture per massimizzare gli effetti osservati, sull'estensione della tecnica a materiali diversi dal tungsteno e sulla comprensione più approfondita della transizione tra regime classico e quantistico nell'emissione di elettroni. Rimane inoltre da esplorare sistematicamente come questi fenomeni possano essere sfruttati per il controllo coerente di correnti elettroniche su scale temporali femtosecondi-attosecondi, con potenziali ricadute nello sviluppo di dispositivi optoelettronici di nuova generazione operanti a frequenze ottime.

Fonte dell'articolo: phys.org

Leggi altri articoli

👋 Partecipa alla discussione! Scopri le ultime novità che abbiamo riservato per te!

0 Commenti

⚠️ Stai commentando come Ospite . Vuoi accedere?

Invia

Per commentare come utente ospite, clicca triangoli

Cliccati: 0 /

Reset

Questa funzionalità è attualmente in beta, se trovi qualche errore segnalacelo.

Segui questa discussione
Advertisement

Non perdere gli ultimi aggiornamenti

Newsletter Telegram

I più letti di oggi


  • #1
    Non ti pago per avviare il PC, scatta la denuncia
  • #2
    Lavorare 72 ore a settimana, il nuovo modello che piace a USA e Cina
  • #3
    BMW X3 20d: il SUV più desiderato d'Italia cambia forma
  • #4
    Sono già 8 milioni gli utenti che programmano con Lovable AI
  • #5
    22% di sconto su Amazon con appena 25€ di spesa
  • #6
    Black Friday: upgrade alla tastiera che volevi, con il prezzo che speravi
Articolo 1 di 5
Scoperti nuovi indizi sulle origini di Homo sapiens
Il bacino Omo-Turkana tra Kenya ed Etiopia conserva oltre 1.200 fossili di ominini, un terzo dei resti umani antichi africani.
Immagine di Scoperti nuovi indizi sulle origini di Homo sapiens
Leggi questo articolo
Articolo 2 di 5
Tumore alla vescica: la svolta arriva da un micro-impianto
Dalla sperimentazione SunRISe-1 emergono risultati promettenti per i pazienti che non rispondono più alle terapie standard a base di BCG.
Immagine di Tumore alla vescica: la svolta arriva da un micro-impianto
Leggi questo articolo
Articolo 3 di 5
Vetri ghiacciati? La soluzione è elettrostatica
L'elettricità statica ad alta tensione rimuove il 75% del ghiaccio dalle superfici consumando meno della metà dell'energia rispetto ai metodi tradizionali.
Immagine di Vetri ghiacciati? La soluzione è elettrostatica
Leggi questo articolo
Articolo 4 di 5
Diamanti quantistici: la nuova frontiera dei sensori
I fisici di Santa Barbara trasformano difetti controllati nei diamanti sintetici in sensori quantistici capaci di rilevare campi magnetici di proteine.
Immagine di Diamanti quantistici: la nuova frontiera dei sensori
Leggi questo articolo
Articolo 5 di 5
L’AI risolve un mistero sotterraneo vecchio di decenni
Un nuovo modello di deep learning prevede con precisione i flussi sotterranei, riducendo tempi di calcolo da mesi a pochi secondi.
Immagine di L’AI risolve un mistero sotterraneo vecchio di decenni
Leggi questo articolo
Advertisement
Advertisement

Advertisement

Footer
Tom's Hardware Logo

 
Contatti
  • Contattaci
  • Feed RSS
Legale
  • Chi siamo
  • Privacy
  • Cookie
  • Affiliazione Commerciale
Altri link
  • Forum
Il Network 3Labs Network Logo
  • Tom's Hardware
  • SpazioGames
  • CulturaPop
  • Data4Biz
  • TechRadar
  • SosHomeGarden
  • Aibay

Tom's Hardware - Testata giornalistica associata all'USPI Unione Stampa Periodica Italiana, registrata presso il Tribunale di Milano, nr. 285 del 9/9/2013 - Direttore: Andrea Ferrario

3LABS S.R.L. • Via Pietro Paleocapa 1 - Milano (MI) 20121
CF/P.IVA: 04146420965 - REA: MI - 1729249 - Capitale Sociale: 10.000 euro

© 2025 3Labs Srl. Tutti i diritti riservati.